围绕商品的站内个性化推荐,根本点是围绕用户在购物生命周期内不同阶段做个性化推荐。那么用户不同阶段有哪些特点?
根据互联网时代的AISAS用户行为模式,用户依次会经历注意到——感兴趣——搜索——购物行为——分享这五个阶段,推荐也是在这五个阶段进行的。这五个阶段背后又有细分的用户行为。
第一阶段:注意到
这个过程中,我们需要让用户看到我们的产品,因此在用户浏览首页、超市页、列表页、产品详情页的过程中,就要不遗余力的推荐用户去看我们的商品。
但当用户看到该商品之后,我们需要根据不同的情况作引导区分:
情况一:针对不满意当前商品的用户引导。这部分用户由于价格、库存、促销等因素,对当前商品不满意,通常情况下会产生退出。此时,我们需要针对用户浏览轨迹,做商品浏览引导。因此就会出现“浏览了该商品的用户还浏览了”的个性化推荐。
情况二:针对满意当前商品的用户引导。引导的是让用户下单,但在下单过程中,用户可能会存在犹豫,通常情况下他会对当前的产品不肯定,因此利用群集效应的个性化推荐栏“浏览了该商品的用户最终购买了”就出现了,为了增加集群效应,我们还会用百分比的形式增加消费氛围。
如右图为浏览了华为U500后的站内个性化推荐形式:
第二阶段:感兴趣
我们发现用户在不同的品类上,网站关注价格与实际成交价格具有差异性,并且这种差异性在不同品类上表现不同。有的品类网站关注价格会高于成交价格,有的品类网站关注价格会低于成交价格。
对于用户这种口是心非的行为,如果我们只是一味的按照用户实际浏览数据做个性化推荐,效果必然要打折扣,解决方法是不管在做哪方面推荐,用户的全部行为数据都要计入推荐权重中,购买的购买数据的推荐权重一定要更大。做分析和做推荐的根本是围绕有成交用户的数据,让没有成交的用户沿着有成交用户的轨迹形成转化。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
岱庙资源网 Copyright www.zgmyg.com
暂无“解密站内个性化推荐之个性化推荐背后的逻辑什么”评论...
更新日志
2025年01月10日
2025年01月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]